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Received: 28 October 2011 / Accepted: 16 January 2012 / Published online: 8 February 2012

� Springer Science+Business Media B.V. 2012

Abstract While chemical shifts are invaluable for

obtaining structural information from proteins, they also

offer one of the rare ways to obtain information about

protein dynamics. A necessary tool in transforming

chemical shifts into structural and dynamic information is

chemical shift prediction. In our previous work we devel-

oped a method for 4D prediction of protein 1H chemical

shifts in which molecular motions, the 4th dimension, were

modeled using molecular dynamics (MD) simulations.

Although the approach clearly improved the prediction, the

X-ray structures and single NMR conformers used in the

model cannot be considered fully realistic models of pro-

tein in solution. In this work, NMR ensembles (NMRE)

were used to expand the conformational space of proteins

(e.g. side chains, flexible loops, termini), followed by MD

simulations for each conformer to map the local fluctua-

tions. Compared with the non-dynamic model, the

NMRE?MD model gave 6–17% lower root-mean-square

(RMS) errors for different backbone nuclei. The improved

prediction indicates that NMR ensembles with MD simu-

lations can be used to obtain a more realistic picture of

protein structures in solutions and moreover underlines the

importance of short and long time-scale dynamics for the

prediction. The RMS errors of the NMRE?MD model

were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for 1Ha,
1HN, 13Ca, 13Cb, 13CO and backbone 15N chemical shifts,

respectively. The model is implemented in the prediction

program 4DSPOT, available at http://www.uef.fi/4dspot.
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Introduction

Chemical shifts are strongly dependent on the tertiary

structure of the protein. This structural information has

been exploited in determining protein structures using

chemical shifts and sequence-based modeling (Cavalli

et al. 2007; Shen et al. 2008; Wishart et al. 2008). Recently,

restraints for molecular dynamics simulations have been

created based on chemical shift prediction, allowing the

use of chemical shifts in the model calculation in a more

straightforward way (Robustelli et al. 2010).

Over the last decade, a number of empirical protein

chemical shift prediction methods have been presented.

The growth of databases makes it possible to yield accurate

predictions with homology-based methods such as the

SHIFTY? part of SHIFTX2 (Han et al. 2011), but the

inclusion of sequence similarity-based data does not pro-

vide explicit structural information and is less useful when

the function of the protein is considered. On the other hand,

in recent structure-based approaches (Kohlhoff et al. 2009;

Liu et al. 2011; Neal et al. 2003; Shen and Bax 2007, 2010;

Xu and Case 2001), the prediction accuracy seems to be

facing the barrier of the protein structure resolution. In

these methods, the teaching data usually consists of X-ray

structures or single conformers of NMR structure
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ensembles, although chemical shifts are measured in sol-

vent, where protein structures are dynamic. Recently, the

importance of dynamics in chemical shift prediction has

been recognized in the literature (Baskaran et al. 2010;

Lehtivarjo et al. 2009; Li and Brueschweiler 2010; Mark-

wick et al. 2010).

Protein structures determined by NMR are published

mostly as ensembles in which usually 20 conformers are

used to represent the structure in solvent. Flexibility in

protein moieties reduces the number of restraints available

for model calculation, allowing different conformations for

side chains and random coils to be created. Together these

conformations then resemble long time-scale motions in

the ensembles. Baskaran et al. (2010) showed that by

averaging the prediction results of SHIFTX (Neal et al.

2003) or SHIFTS (Xu and Case 2001) over the confor-

mations of the NMR ensembles, about a 9% improvement

in prediction accuracy was gained compared with the

prediction using only the lowest energy conformations. On

the other hand, short MD simulations, mapping local

fluctuations, gave a 6–7% benefit for 1H shifts (Lehtivarjo

et al. 2009). In order to gain more extensively mapped

protein dynamics for the chemical shift prediction, we

decided to expand the 4th dimension (conformational

space) of our prediction model by combining both

approaches. Briefly, this is done by performing MD sim-

ulations for all the conformers of the NMR ensembles. As

in our previous study, the prediction model itself is also

built from dynamic protein models. This study also

examined the prediction efficiency of NMR structures,

which have been often ignored in earlier studies. The

computer program 4DSPOT (4–Dimensional Shift Predic-

tion: averaged Over Time) was updated to use this new

model, now also predicting 13C and 15N chemical shifts.

Methods

Database

Altogether 94 NMR structure ensembles, containing a total of

1,809 conformers, (Supplementary material Table S1) were

downloaded from the PDB (Protein Data Bank, Berman et al.

2000) and the corresponding observed chemical shifts from

the BMRB (Biological Magnetic Resonance Bank Ulrich

et al. 2008). Observed chemical shifts were re-referenced

using LACS (Wang and Markley 2009) to correct possible

biases caused by non-standard sample conditions or misre-

ferencing. A total of 49,939 1H shifts, 36,135 13C shifts and

9,492 15N shifts were imported to the teaching database. The

proteins of the teaching database are ligand-free monomers of

sizes varying from 46 to 202 amino acid residues, determined

with standard protein NMR methods. To achieve the

prediction accuracy stated in this study, the query proteins

must fulfil the above criteria. As in the previous version of the

4DSPOT program, most of the side chain shifts can be pre-

dicted. Included are the side chain methyl groups, whose

importance has recently been emphasized (Sahakyan et al.

2011). However, due to the low number of data points, several

atom types (see Supplementary material text) are not pre-

dicted. For the same reason, the 15N side chain shift prediction

is still at an inadequate level, and thus omitted from the results.

Molecular dynamics

Local fluctuations of the protein conformers were mapped

with 100 ps MD simulations performed using the AMBER

10 program (Case et al. 2008) and the ff99SB force field

(Hornak et al. 2006). Protein conformers were solvated by

TIP3P water molecules in periodic solvent boxes extending

at least 11 Å from the protein atoms. To neutralize the total

charge of the simulation systems, an adequate number of

Na? or Cl- ions were added. The equilibration protocol of

the MD simulations is similar as before (Lehtivarjo et al.

2009). In the production simulations of 100 ps the elec-

trostatics were treated using the particle mesh Ewald

method. A time step of 1.5 fs was used and bonds to

hydrogen atoms were constrained to their equilibrium

lengths using the SHAKE algorithm. During the production

simulations structures were saved every 1 ps, yielding 100

snapshots for every conformer. For each protein, the 100 ps

trajectories of the individual conformers are then read into

the prediction program to create a combined trajectory of

length of 1–4 ns, depending on the conformer count.

To assess the effects of the dynamics of different time-

scales for the prediction results, four different prediction

models were created. (1) The non-dynamic model was built

from single conformers, without any dynamics, from the

‘‘most representative conformers’’ of the PDB files, thus

setting up the baseline for the evaluation. (2) The NMR

ensemble (NMRE) model was built using all the con-

formers of the NMR ensembles as the dynamic data, but

without the MD simulations. (3) In the molecular dynamics

(MD) model the effect of molecular dynamics is evaluated

by carrying out MD simulations for the most representative

conformers only. (4) Ultimately, the NMRE?MD model

includes the dynamics of both the NMR ensembles and the

MD simulations. The schematic presentation of these

models as well as the total number of conformations used

for each model is shown in Fig. 1.

Prediction protocol

The prediction protocol, for the most part, is the same as

that presented in Lehtivarjo et al. (2009). Briefly, the
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method derives molecular descriptors (Supplementary

material Table S2) from protein structures which are then

averaged over the combined conformational space of the

NMR ensembles and the MD simulations. 194, 142 and 95

descriptors are used for 1H, 13C and 15N models, respec-

tively. Principal component regression (PCR) is then

applied to solve the weight factors P for the averaged

descriptors Xh i. Chemical shifts can then be calculated by

Eq. 1,

dn ¼ dn
� þ

X
Pi Xih i ð1Þ

in which dn� is the base value of the chemical shift. The

prediction work flow is also similar as before, including the

phases of (1) calculating an initial prediction result,

(2) based on the initial result, removing the worst 10% of

data points from the teaching set for the sake of data cer-

tainty, (3) creating and applying correlation parameters

XiXj and (4) applying PCR locally to individual chemical

shift classes (Table 1). The new protocol differs from the

previous by introducing a random forest regression (Brei-

man 2001) protocol as the final adjustment of the predic-

tion. The random forest regression provides some advance

to the prediction by searching strong correlations between

descriptors. The method will be discussed in more detail

elsewhere. The previously unpublished 13C and 15N pre-

dictions of 4DSPOT follow the same protocol as 1H shifts,

only with different set of descriptors (Table S2). The

modelling of solvent effects is improved from the previous

descriptor set: in the new method, the solvent molecules

are imported all the way to the predictor and explicit sol-

vent descriptors are then created.

The importance of implementing dynamics in the pre-

diction model must be emphasized (Fig. 2). In principle,

the dynamic information can be exploited by predicting

MD or NMR ensemble conformers one-by-one and then

averaging the results, as has been done in the studies of

Baskaran et al. (2010) and Markwick et al. (2010). In these

studies, however, the prediction models are built from non-

dynamic X-ray structures (Neal et al. 2003; Xu and Case

2001). As it is shown that single conformations cannot

describe the chemical shifts of a protein correctly (Baskaran

et al. 2010; Lehtivarjo et al. 2009; Li and Brueschweiler

2010; Markwick et al. 2010), the teaching data should also

be dynamically averaged to gain the most realistic struc-

ture. In this study, the prediction model is built from

molecular descriptors averaged over the conformations of

NMR ensembles and MD simulations. When this approach

is used, the query proteins are treated similarly and the

prediction is performed in one phase for the whole con-

formational space.

Results and discussion

All the following results are obtained using the leave-one-

out cross validation protocol in which the protein shifts are

predicted by excluding the currently predicted protein from

the teaching database.

Comparison of non-dynamic and dynamic prediction

results

RMS errors of the four different prediction models (see

‘‘Methods’’) are compared in Fig. 3. For the R correlation

coefficients and mean errors of the same data, see Sup-

plementary material Tables S3 and S4. As previously

shown (Baskaran et al. 2010; Lehtivarjo et al. 2009; Li and

Brueschweiler 2010; Markwick et al. 2010), including any

dynamics to the prediction model improves the prediction

results. As anticipated, the NMRE?MD model yielded the

lowest RMS errors. More notably, the improvements from

dynamics seen in the combined model are equal or larger

Fig. 1 Schematic presentation of different prediction models used in

this study with a number of conformations used for building each

model. A database of 94 proteins was used in all models

Table 1 Chemical shift classes used for 1H, 13C and 15N prediction

1H 13C 15N

Ha Ca Backbone N

HN CO Side chain N

Hb Cb

Side chain CH3 Side chain CH3

Side chain CH2 Side chain CH2

Proline CH2 sp2 C

Side chain CH

XH

Aromatic H
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than the cumulative improvements of its parts (NMRE

model ? MD model) for all nuclei except 13CO, with

synergistic benefits up to 5% (Table 2). This confirms that

the NMR ensembles and short MD simulations truly map

the dynamics of different time-scales. The protein-specific

prediction results of the NMRE?MD model are shown in

the Supplementary material Table S5.

Compared with the non-dynamic model, the improve-

ment gained with the NMRE?MD model was on average

13% for backbone nuclei, being largest for 13Cb and 1Ha
shifts (17.1 and 16.4%, respectively). For 1Ha shifts, this

improvement was almost three times larger than in our

previous study with 40 protein database of single NMR

conformers and X-ray structures and motions mapped with

150 ps MD simulations. Furthermore, the 1H results are

notably better than in our previous work, in which they

were 0.29, 0.50 and 0.28 for 1Ha, 1HN and side chain 1H

shifts. For side chains, the dynamic effect is smaller than

for backbone shifts. This is mostly due to low sensitivity of

side chain shifts to structural effects. However, also in side

chain prediction the NMRE?MD model yielded the best

results.

Fig. 2 Schematic presentation

of the dynamic approaches of

the recent prediction studies.
a Han et al. (2011), b Shen and

Bax (2010), c Kohlhoff et al.

(2009), d Baskaran et al. (2010),
e Markwick et al. (2010)

Fig. 3 Prediction RMS errors for backbone and side chain (sc) nuclei predicted with four different models
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The two dynamic parts of the combined model, NMR

ensembles and MD simulations, have dissimilar effects on

backbone nuclei. Namely, the NMRE model gives

somewhat lower RMS errors than the MD model for
13Ca, 13Cb and backbone 15N nuclei, whose chemical

shifts are dominated by torsion angle effects (Wishart and

Case 2001). These effects are evidently mapped better

with dynamics of longer time-scale that NMR ensembles

mimic. 13CO and 1HN nuclei, which are known to be

sensitive to local structure and dynamics due to r-3

dependency of hydrogen bonding (Dedios and Oldfield

1994; Moon and Case 2007; Parker et al. 2006), and 1Ha
nuclei, which are exposed to aromatic ring currents

(Wishart and Case 2001), are slightly better predicted

with the MD model.

For most nuclei, the plot of prediction error versus

observed shift is biased: both the low and high values of

shifts are poorly predicted. This behavior is best seen in
1HN shifts (Fig. 4), in which the variance between random

coil shifts of different residues is minimal: a strong cor-

relation between observed chemical shift and prediction

error is found. The bias is described by the R of the cor-

relation: the smaller the correlation, the better. When we

analyzed the Ca shift prediction data provided by the study

of Liu et al. (2011), and the data from our own tests with

SPARTA? (Shen and Bax 2010), similar trends were

observed. This means that the prediction, or molecular

models, or both are not capable of properly describing the

strong effects, such as aromatic ring currents (low values)

and hydrogen bonding (high values) in the case of 1HN

shifts. Very recently, the bias was reported also in the paper

of shAIC prediction method (Nielsen et al. 2012). Overall,

the correlation offers a sensitive statistic for the quality of

the prediction model.

Table 2 Synergistic benefits of NMRE?MD model for backbone

and side chain (sc) shifts

Nuclei Expected RMS error

of NMRE?MD

model (ppm)a

RMS error,

NMRE?MD

model (ppm)

Synergistic

benefit (%)

1Ha 0.25 0.24 3.8
1HN 0.44 0.43 3.4
13Ca 1.03 0.98 5.1
13Cb 1.03 1.03 0.1
13CO 1.15 1.14 1.0
15N 2.49 2.39 4.1
1H(sc) 0.27 0.26 3.5
13C(sc) 1.01 1.01 0.8

a Calculated by multiplying the result of non-dynamic model with

the dynamic improvements of the NMR ensemble model and MD

model

Fig. 4 Correlation of observed

chemical shift versus prediction

error for 1HN shifts in different

prediction models (n = 8,603).

The R values are the Pearson

correlation coefficients. The

RMS errors of the 1HN

prediction are 0.49, 0.48, 0.47

and 0.43 ppm for non-dynamic,

NMRE, MD and NMRE?MD

models, respectively
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The freedom caused by the inclusion of 4th dimension

could be expected to loosen the NH–aromatic and NH–

O=C contacts and to decrease their contribution to the

shifts. However, it decreases the correlation (Fig. 4) and

improves the prediction (RMS error). Our explanation to

this dilemma is that only the real aromatic and hydrogen

bonded contacts are preserved in the dynamic protein

model while the more or less accidental contacts are

loosened. In other words, when the protein models become

more realistic, the prediction model is also improved so

that the abovementioned contributions are strengthened.

Effect of dynamics on the prediction model

In this study, the benefit from dynamics is expected to arise

from two sources: the mapping of conformational space of

the query protein and the improvement of the prediction

model itself. It has been assumed here that building a

dynamic prediction model instead of just averaging the

results of single conformations predicted with non-dynamic

prediction model would yield better results (see ‘‘Meth-

ods’’). To test this assumption, all snapshots from

NMRE?MD ensembles of five proteins were predicted one

by one with the non-dynamic model. The results were then

simply averaged over the number of conformers

(1,000–2,000) of each protein. Using this approach, the

conformational space of the query protein is similar to the

actual NMRE?MD model, and the effect of the prediction

model can be estimated. Table 3 shows the results of the

snapshot approach compared with the non-dynamic model

and the NMRE?MD model. For each protein individually,

the results are shown in Supplementary material Table S6.

On average, the fully dynamic prediction yields 18%

lower RMS errors than the snapshot approach. It is also

notable that including only query protein dynamics may

even impair the results, e.g. in the case of ubiquitin (PDB

1D3Z) which is a rigid and already well defined structure.

In addition, as the non-dynamic model is here built with

original models not homogenized with the ff99SB force

field, uncertainty between the query protein and the model

is created. The results with snapshot approach fall mostly

between the fully non-dynamic and fully dynamic models

(Table S5). For the backbone nuclei 1Ha, 1HN, 13Ca and
13Cb, 65–80% of the dynamic benefit originates from the

improved prediction model, and the rest from the dynamics

of the query protein (Table 3). In the case of backbone 15N

nuclei, prediction model and query protein dynamics were

equally important. In this evaluation, only two proteins

with observed 13CO shifts were present. For those, all

improvement came from the better defined prediction

model. 13CO shifts are extremely sensitive to local struc-

ture (Dedios and Oldfield 1994), so adding larger motions

to query protein but not to the prediction model slightly

impairs the results.

Effect of force field homogenization

Using teaching data from many different sources leads to

uncertainty stemming from different structure determina-

tion methods, e.g. force fields. Therefore, it is probable that

some of the dynamic benefit reported above is due to the

homogenization of the structures with the ff99SB force

field (Hornak et al. 2006). To evaluate the significance of

this effect, another non-dynamic single conformer model

was built so that each protein was geometry optimized by

100 steps using the ff99SB force field. The RMS errors of

this model were 0.29, 0.49, 1.11, 1.22, 1.22 and 2.73 ppm

for 1Ha, 1HN, 13Ca, 13Cb, 13CO and backbone 15N

chemical shifts, respectively. Compared with the non-

dynamic model of raw PDB data, the RMS errors are only

1–2% smaller, thus explaining only a small part of the

overall dynamic benefit.

Origins of the dynamic effects on the prediction results

The protein-specific comparison of the dynamic benefits,

averaged over the six backbone nuclei types, is presented

in Fig. 5. The figure shows, that in almost every case the

use of NMRE?MD model improves the prediction result

and, as indicated by the error bars, the improvement is

uniform among the backbone nuclei. The same data for

each backbone nuclei separately can be found from Sup-

plementary material Figure S1. In some cases, remarkable

improvements up to 52% are seen. Quite often these

improvements originate from one very poorly predicted

shift, which is then corrected with the dynamic approach.

Next, selected examples how dynamic prediction improves

the prediction are described.

Table 3 Effect of dynamics in prediction model using five proteins

for the evaluation

Nuclei Prediction RMS error (ppm)

Non-dynamic Snapshot

approacha
NMRE?MD

1Ha 0.28 0.24 0.18
1HN 0.45 0.42 0.35
13Ca 0.97 0.92 0.73
13Cb 1.36 1.22 0.98
13COb 1.12 1.14 0.93
15N 2.71 2.48 2.23

a Conformational space of query proteins modelled as in

NMRE?MD model, but predicted with non-dynamic model one

snapshot at a time
b 13CO shifts were present in only two out of five selected proteins
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Aromatic ring currents

Aromatic ring currents cause the most intensive effects on
1H shifts (Wishart and Case 2001). In the DNA repair

protein HHR23A (PDB 1DV0), the K28Ha nucleus is

located close to aromatic side chain rings of Y23 and F24

(Fig. 6a). This leads to a very unusual observed chemical

shift of 1.67 ppm, as the random coil shift for lysine 1Ha is

4.32 ppm (Wishart et al. 1995). The non-dynamic predic-

tion for the best conformer of the NMR ensemble for this

nucleus is 3.82 ppm. In this conformer the aromatic rings

are not close enough and not orthogonally oriented towards

the K28Ha nucleus. It is notable that neither the NMRE

model (predicted shift 3.49 ppm) nor the MD model

(2.89 ppm) alone can map the ring orientations correctly,

but with the NMRE?MD model the predicted shift of

2.03 ppm is rather close to the experimental value of

1.67 ppm. Moreover, the observation that result-averaged

approach (all 100 ps trajectories predicted with the MD

model) also gives an inadequate prediction of 2.86 ppm

indicates that the improvement is not coming only from

more realistic structure of query protein, but also that the

prediction model itself is improved as more realistic

aromatic anisotropy model is obtained. Evidently, in

non-dynamic models, aromatic anisotropy terms become

too weak due to lack of resolution.

Dynamic averaging

Proteins with very flexible regions often achieve great

improvements from dynamic averaging. This is confirmed

in the work of Markwick et al. (2010), for example, where

up to 28% improvements were obtained for flexible

ankyrin repeat protein IKBA (PDB 1NFI) with accelerated

molecular dynamics as the method to simulate protein

motion. Naturally, for small and tightly packed globular

proteins such as ubiquitin, the improvements are less

notable. This is also seen in our database.

In BH0266 protein (PDB 2KQ1) there is a flexible loop

of six residues from Y20 to Y25 (Fig. 6b). In the middle of

the loop, there is E23Ca having an unexceptional observed

shift of 58.03 ppm, which is poorly predicted (56.21 ppm)

using the best representative conformer and the non-

dynamic model. Further exploration of the case shows that

the non-dynamic predictions of the ensemble conformers

vary considerably from each other with a standard devia-

tion of 0.79 ppm, some of them giving precisely the

observed shift and some showing prediction errors up to

Fig. 5 Protein-specific comparison of non-dynamic and NMRE?MD

prediction models. The bars indicate average backbone nuclei RMS

error changes (in %) from the non-dynamic model (zero level) to the

NMRE?MD model. The error bars are standard deviations of

backbone nuclei RMS error changes. Solid line is the average RMS

error change and the broken lines are standard deviations of the

protein RMS error changes
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2.01 ppm. The average predicted shift was 57.3 ppm.

Thus, the benefit from the ensemble dynamics is notable,

but still leaves the predicted shift rather far from the

observed one. When 100 ps MD simulation is applied to

the conformers and shifts are predicted with the MD model,

the standard deviation of the calculated shifts drops to

0.39 ppm and the average predicted shift becomes

57.81 ppm. This shows how the mapping of local fluctu-

ations smoothes the predictions of this flexible moiety and

is almost as essential here as the use of the ensemble

dynamics. Finally, when the NMRE?MD model is used,

the prediction error drops to 0.02 ppm. Naturally, this final

improvement arises from the better prediction model, as

the conformational space is the same as in the result-

averaging approach.

Erroneous structures and hydrogen bonding

As the NMR structure determination is still based mostly

on NOE restraints, it is highly possible that sometimes

erroneous folds will enter the published ensembles and

even the best representative conformers, because there are

not always enough restraints to unambiguously determine

all parts of the structures. In the uncharacterized protein

from Rhodospillirum rubrum (PDB ID 2K0M), the b–turn

of residues R32–D35 is found in two different conforma-

tions, having the G34 u angle either -154� ± 15� (8

conformers) or 155� ± 5� (12 conformers, Fig. 6c). How-

ever, the predictions of the G34H nucleus of the static

conformers suggest that the former conformer is erroneous,

as its average prediction error is 1.66 ± 0.10 ppm, whereas

in the latter case the error is 1.02 ± 0.16 ppm. In the for-

mer case, a hydrogen bond to V68O, essential to reproduce

the upfield observed shift of G34H of 9.47 ppm, cannot be

formed. In the latter case, this hydrogen bond is present in

7 out of 8 conformers. Moreover, in 18 out of 20 cases MD

simulations convert the fold to a typical bII turn, with

average torsion angles of 126� ± 4� and 89� ± 9� for the

P33 w and G34 u angles, respectively, indicating strong

tension at the original ensemble conformers. This conse-

quently leads to strengthening of the G34H–V68O hydrogen

bond and to a decreased average prediction error of

0.59 ppm. Finally, the NMRE?MD model yields the pre-

diction error of 0.34 ppm. This example shows how even

short MD simulations can fix erroneous structures and

emphasizes the importance of correct hydrogen bond mod-

eling to the prediction, especially for 1HN shifts for which

the contribution to the secondary shift is up to 25% (Wishart

and Case 2001). In addition, it shows that by using chemical

shift information, these kinds of erroneous conformations

can be easily found and prevented from entering the final

ensemble. The use of back-calculated chemical shifts,

among other parameters, has also been suggested before for

ensemble conformer selection (Krzeminski et al. 2009) and

ensemble assessment (Angyan et al. 2010).

Side chain dynamics

Side chain dynamics often play important role in chemical

shift mapping, especially if hydrogen bond donors or

acceptors, or aromatic rings are present in the side chains.

However, in statistical sense they are less important as the

contribution to the backbone secondary shift is estimated to

be only 5% (Wishart and Case 2001). Besides the direct

effect of the vn angles to the shifts of the residue itself, the

effects can be seen also in the neighboring residues or other

spatially close residues. In the original NMR ensemble of

PefI protein (PDB 2JT1) the side chain of Y39 lies in either

trans (16 out of 20 conformers) or gauche? (4 out of 20)

conformation (Fig. 6d). Depending on the conformation,

the Q40H proton is located inside the aromatic ring current

or not. In the trans case, the average prediction error of

Q40H is -0.52 ± 0.07 ppm while in the gauche? case it

is 0.04 ± 0.05 ppm, clearly declaring the latter confor-

mation correct. Although the gauche? conformation is

present only in 4 out of 20 conformers of the ensemble, the

MD simulations and dynamic prediction model is capable

of decreasing the prediction error down to -0.21 ppm from

Fig. 6 Selected examples of dynamic effects to the prediction results.

a Aromatic groups close to K28Ha in the best representative

conformer of the NMR ensemble (PDB 1DV0). b Alignment of

NMR ensemble conformations of the flexible loop region Y20–Y25

(PDB 2KQ1, backbone and residue E23 heavy atoms shown)

c Alignment of NMR ensemble conformations of b-turn R32–D35

and residue V68 (PDB 2K0M). Hydrogen-bonded conformations

shown green, others blue. d Alignment of NMR ensemble confor-

mations of residues Y39 and Q40 (PDB 2JT1). Gauche? conforma-

tions of Y39 v1 angle shown green, trans conformations blue
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-0.60 ppm of the non-dynamic prediction of the best

representative conformer (trans conformation). The long

time-scale side chain dynamics is often achievable from

NMR ensembles, but not from the 100 ps MD simulations,

where side chain rotations rarely occur.

Impaired prediction results

In 4 out of 94 proteins, the dynamic approach degraded the

prediction results (Fig. 5). The largest negative effect was

seen on EF-hand domain of polycystin-2 (PDB 2KQ6). In this

case the inferior prediction is explained with an erroneous

descriptor value caused by an extrapolation problem in N1Cb.

Such problems are rare but are sometimes observed, espe-

cially in uncommon structures such as the N-terminal aspar-

agine of this case. Note that the 4DSPOT program warns the

user if the predicted shift is over three standard deviations

away from BMRB average. Moreover, there is another loop

region (D44–T52) with large prediction errors. It is evident

that MD simulations cannot always fix flexible regions and

may distort them even more, thus leading, as seen in the cases

of G47H and T52N, to less accurate predictions. Another

example with impaired 1H prediction results is the H2H3

domain of ovine prion protein (PDB 2KTM). It is a rod-shaped

protein with a number of aromatic residues and flexible ter-

mini, making it very difficult to map the conformational space

accurately enough. Furthermore, in the static structure of the

acyl carrier protein from Borrelia burgdorferi (PDB 2KWL)

there are two large 13Ca shift prediction errors (E37Ca,

3.92 ppm and I61Ca, -3.08 ppm) in the loop regions. When

the NMRE?MD model is used, the errors grow larger (5.17

and -4.97 ppm, respectively). The errors are present and the

loops are in identical conformations throughout the ensemble.

It is therefore evident that the structure must be incorrectly

folded or at least too rigid in these parts. It is seen in some cases

that existing large errors in non-dynamic structures become

even larger after MD if the structure is distorted enough and

short MD is unable to fix the structure.

Protein-specific results

The proteins of the teaching database are a cross-section of

the recent NMR structures submitted to BMRB, reflecting

the present-day level of NMR structure accuracy. In the

database structures of varying precision are present, with

the lowest RMS errors as low as 0.10 (PDB 2KNG), 0.21

(2KNG), 0.56 (2KRU), 0.47 (2KRU), 0.62 (2KPO) and

1.48 ppm (1PN5) for 1Ha, 1HN, 13Ca, 13Cb, 13CO and

backbone 15N chemical shifts, respectively. The protein-

specific prediction results of the NMRE?MD model are

shown in Supplementary material Table S5. The three

proteins with lowest RMS errors are (1) C-domain of Lsr2

(PDB 2KNG), which is a small and simple protein without

error-prone aromatic residues, (2) de novo designed

Rossmann 2 9 2 fold protein (PDB 2KPO), which has a

compact and rigid structure and (3) PCP_red domain of

light-independent protochlorophyllide reductase (PDB

2KRU), which is a small a-helical protein. Common

properties of 2KNG and 2KRU are that they are small (55

and 63 aa, respectively) and have flexible termini, allowing

the dynamic benefit (21 and 27%, respectively) to be

evolved. Moreover, they are both a–helical, which on

average yields smaller errors than b-sheets and random

coils for 1Ha shifts, as noticed in our previous study. On the

other hand, 2KPO is bigger (110 aa) and has a very stable

structure without flexible loop regions. Still, 2KPO gets a

20% dynamic improvement, arising from side chain and

C-terminus dynamics. As there are no prediction errors

larger than 0.8 ppm in backbone 1H shifts and 2.4 ppm in

backbone 13C shifts, it is evident that the structure of 2KPO

is determined remarkably well, especially as there are four

aromatic residues present.

Comparison with other methods

As the approach presented here differs vastly from other

prediction methods by the use of dynamics, a direct com-

parison with the non-dynamic structure prediction would

be unfair. However, the RMS errors reported here are quite

similar to the state-of-the-art structure-based method

SPARTA? (Shen and Bax 2010), which reports the RMS

errors of 0.25, 0.49, 0.94, 1.14, 1.09 and 2.45 ppm for 1Ha,
1HN, 13Ca, 13Cb, 13CO and backbone 15N chemical shifts,

respectively, for 11 X-ray structures predicted with a

database of 580 protein models. This suggests that the

chemical shifts of proteins can also be effectively predicted

without the superior resolution of X-ray structures, as the

incorporation of the dynamic information from the side

chains and random coils carried by NMR ensembles is able

to compensate the less accurate local structures. As the

proteins are dynamic structures in NMR sample, this

sounds reasonable: a single conformation cannot explain

all the chemical shift contributing effects of dynamic ori-

gin. Indeed, even atomic resolution X-ray structures (below

1.0 Å) are sometimes predicted with rather large errors

(Shen and Bax 2010). Moreover, the differences between

X-ray and NMR structures, estimated to be on average

1.4 Å in backbone RMSD (Andrec et al. 2007), are not

compromising the prediction results.

Conclusions

In this study, a dynamic model combining NMR ensembles

and MD simulations (NMRE?MD) for prediction of
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protein chemical shifts was introduced. The model

achieved 13% lower RMS errors for the backbone nuclei,

when compared with the non-dynamic model. This paper

also presents the largest dynamic teaching database avail-

able for protein chemical shift prediction, containing

95,566 chemical shifts and a total of 180.9 ns of simula-

tions of 94 proteins. The inclusion of dynamics in the

prediction model was found to have clear advantages

compared with approach in which only the dynamics of the

query proteins were mapped.

In contrast to previous prediction methods, our pre-

diction model uses only NMR determined protein struc-

tures in the teaching database. In our previous work,

X-ray structures gave better prediction than the corre-

sponding NMR structures. The more accurate local

structures of X-ray structures compensate the fact that

they do not contain much information about weakly fol-

ded structures and side chain conformations on protein

surface. These features were neither described well in our

previous teaching database, because we used only single

NMR conformations and, therefore, the 4th dimension

(conformational space) of NMR structures became only

partly described. In this work, we used NMR ensembles

to expand the 4th dimension. All our present results

clearly show that the NMRE?MD model offers a more

realistic representation of the protein structures than the

previous models.

In spite of the improvement brought by the present

approach, the structure-based prediction of protein

chemical shifts, especially 1HN, 13CO and 15N, stays far

from satisfactory. We propose that the problem is more in

the present protein models, which do not yield an accurate

picture about non-bonded interactions and motions in

proteins. If the function of proteins, in which the

dynamics is expected to have a key role, is wanted to be

really understood, the understanding of the interactions

would be of essential importance—and chemical shifts

offer a tool for this. We suggest that the NMRE?MD

approach offers the best 4D model achievable with rea-

sonable efforts.

Software availability

The 4DSPOT software package for Windows or Linux,

containing manuals and pre-calculated prediction models

for single conformations and dynamic structures, can be

downloaded from http://www.uef.fi/4dspot/.
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